Copied to
clipboard

G = C42.177D6order 192 = 26·3

177th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.177D6, C6.392- 1+4, C4⋊Q815S3, C4⋊C4.221D6, C4.D1245C2, (Q8×Dic3)⋊24C2, (C4×Dic6)⋊54C2, (C4×D12).28C2, (C2×Q8).173D6, (C2×C6).276C24, C12.139(C4○D4), C4.19(D42S3), (C2×C12).109C23, (C4×C12).217C22, D6⋊C4.155C22, C4.41(Q83S3), C12.23D4.8C2, (C6×Q8).143C22, (C2×D12).274C22, C4⋊Dic3.386C22, C22.297(S3×C23), Dic3⋊C4.168C22, (C22×S3).121C23, C2.40(Q8.15D6), C38(C22.50C24), (C2×Dic6).304C22, (C4×Dic3).165C22, (C2×Dic3).146C23, (C3×C4⋊Q8)⋊18C2, C4⋊C4⋊S346C2, C4⋊C47S343C2, C6.123(C2×C4○D4), C2.66(C2×D42S3), (S3×C2×C4).149C22, C2.31(C2×Q83S3), (C3×C4⋊C4).219C22, (C2×C4).601(C22×S3), SmallGroup(192,1291)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.177D6
C1C3C6C2×C6C22×S3S3×C2×C4C4.D12 — C42.177D6
C3C2×C6 — C42.177D6
C1C22C4⋊Q8

Generators and relations for C42.177D6
 G = < a,b,c,d | a4=b4=1, c6=a2b2, d2=a2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b, dcd-1=b2c5 >

Subgroups: 480 in 212 conjugacy classes, 99 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic6, C4×S3, D12, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, C42⋊C2, C4×D4, C4×Q8, C22⋊Q8, C4.4D4, C422C2, C4⋊Q8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C4×C12, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C2×D12, C6×Q8, C22.50C24, C4×Dic6, C4×D12, C4⋊C47S3, C4.D12, C4⋊C4⋊S3, Q8×Dic3, C12.23D4, C3×C4⋊Q8, C42.177D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2- 1+4, D42S3, Q83S3, S3×C23, C22.50C24, C2×D42S3, C2×Q83S3, Q8.15D6, C42.177D6

Smallest permutation representation of C42.177D6
On 96 points
Generators in S96
(1 89 32 52)(2 53 33 90)(3 91 34 54)(4 55 35 92)(5 93 36 56)(6 57 25 94)(7 95 26 58)(8 59 27 96)(9 85 28 60)(10 49 29 86)(11 87 30 50)(12 51 31 88)(13 37 82 66)(14 67 83 38)(15 39 84 68)(16 69 73 40)(17 41 74 70)(18 71 75 42)(19 43 76 72)(20 61 77 44)(21 45 78 62)(22 63 79 46)(23 47 80 64)(24 65 81 48)
(1 73 26 22)(2 23 27 74)(3 75 28 24)(4 13 29 76)(5 77 30 14)(6 15 31 78)(7 79 32 16)(8 17 33 80)(9 81 34 18)(10 19 35 82)(11 83 36 20)(12 21 25 84)(37 86 72 55)(38 56 61 87)(39 88 62 57)(40 58 63 89)(41 90 64 59)(42 60 65 91)(43 92 66 49)(44 50 67 93)(45 94 68 51)(46 52 69 95)(47 96 70 53)(48 54 71 85)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 32 25)(2 36 33 5)(3 4 34 35)(7 12 26 31)(8 30 27 11)(9 10 28 29)(13 75 82 18)(14 17 83 74)(15 73 84 16)(19 81 76 24)(20 23 77 80)(21 79 78 22)(37 71 66 42)(38 41 67 70)(39 69 68 40)(43 65 72 48)(44 47 61 64)(45 63 62 46)(49 85 86 60)(50 59 87 96)(51 95 88 58)(52 57 89 94)(53 93 90 56)(54 55 91 92)

G:=sub<Sym(96)| (1,89,32,52)(2,53,33,90)(3,91,34,54)(4,55,35,92)(5,93,36,56)(6,57,25,94)(7,95,26,58)(8,59,27,96)(9,85,28,60)(10,49,29,86)(11,87,30,50)(12,51,31,88)(13,37,82,66)(14,67,83,38)(15,39,84,68)(16,69,73,40)(17,41,74,70)(18,71,75,42)(19,43,76,72)(20,61,77,44)(21,45,78,62)(22,63,79,46)(23,47,80,64)(24,65,81,48), (1,73,26,22)(2,23,27,74)(3,75,28,24)(4,13,29,76)(5,77,30,14)(6,15,31,78)(7,79,32,16)(8,17,33,80)(9,81,34,18)(10,19,35,82)(11,83,36,20)(12,21,25,84)(37,86,72,55)(38,56,61,87)(39,88,62,57)(40,58,63,89)(41,90,64,59)(42,60,65,91)(43,92,66,49)(44,50,67,93)(45,94,68,51)(46,52,69,95)(47,96,70,53)(48,54,71,85), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,32,25)(2,36,33,5)(3,4,34,35)(7,12,26,31)(8,30,27,11)(9,10,28,29)(13,75,82,18)(14,17,83,74)(15,73,84,16)(19,81,76,24)(20,23,77,80)(21,79,78,22)(37,71,66,42)(38,41,67,70)(39,69,68,40)(43,65,72,48)(44,47,61,64)(45,63,62,46)(49,85,86,60)(50,59,87,96)(51,95,88,58)(52,57,89,94)(53,93,90,56)(54,55,91,92)>;

G:=Group( (1,89,32,52)(2,53,33,90)(3,91,34,54)(4,55,35,92)(5,93,36,56)(6,57,25,94)(7,95,26,58)(8,59,27,96)(9,85,28,60)(10,49,29,86)(11,87,30,50)(12,51,31,88)(13,37,82,66)(14,67,83,38)(15,39,84,68)(16,69,73,40)(17,41,74,70)(18,71,75,42)(19,43,76,72)(20,61,77,44)(21,45,78,62)(22,63,79,46)(23,47,80,64)(24,65,81,48), (1,73,26,22)(2,23,27,74)(3,75,28,24)(4,13,29,76)(5,77,30,14)(6,15,31,78)(7,79,32,16)(8,17,33,80)(9,81,34,18)(10,19,35,82)(11,83,36,20)(12,21,25,84)(37,86,72,55)(38,56,61,87)(39,88,62,57)(40,58,63,89)(41,90,64,59)(42,60,65,91)(43,92,66,49)(44,50,67,93)(45,94,68,51)(46,52,69,95)(47,96,70,53)(48,54,71,85), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,32,25)(2,36,33,5)(3,4,34,35)(7,12,26,31)(8,30,27,11)(9,10,28,29)(13,75,82,18)(14,17,83,74)(15,73,84,16)(19,81,76,24)(20,23,77,80)(21,79,78,22)(37,71,66,42)(38,41,67,70)(39,69,68,40)(43,65,72,48)(44,47,61,64)(45,63,62,46)(49,85,86,60)(50,59,87,96)(51,95,88,58)(52,57,89,94)(53,93,90,56)(54,55,91,92) );

G=PermutationGroup([[(1,89,32,52),(2,53,33,90),(3,91,34,54),(4,55,35,92),(5,93,36,56),(6,57,25,94),(7,95,26,58),(8,59,27,96),(9,85,28,60),(10,49,29,86),(11,87,30,50),(12,51,31,88),(13,37,82,66),(14,67,83,38),(15,39,84,68),(16,69,73,40),(17,41,74,70),(18,71,75,42),(19,43,76,72),(20,61,77,44),(21,45,78,62),(22,63,79,46),(23,47,80,64),(24,65,81,48)], [(1,73,26,22),(2,23,27,74),(3,75,28,24),(4,13,29,76),(5,77,30,14),(6,15,31,78),(7,79,32,16),(8,17,33,80),(9,81,34,18),(10,19,35,82),(11,83,36,20),(12,21,25,84),(37,86,72,55),(38,56,61,87),(39,88,62,57),(40,58,63,89),(41,90,64,59),(42,60,65,91),(43,92,66,49),(44,50,67,93),(45,94,68,51),(46,52,69,95),(47,96,70,53),(48,54,71,85)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,32,25),(2,36,33,5),(3,4,34,35),(7,12,26,31),(8,30,27,11),(9,10,28,29),(13,75,82,18),(14,17,83,74),(15,73,84,16),(19,81,76,24),(20,23,77,80),(21,79,78,22),(37,71,66,42),(38,41,67,70),(39,69,68,40),(43,65,72,48),(44,47,61,64),(45,63,62,46),(49,85,86,60),(50,59,87,96),(51,95,88,58),(52,57,89,94),(53,93,90,56),(54,55,91,92)]])

39 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E···4I4J···4Q4R4S6A6B6C12A···12F12G12H12I12J
order122222344444···44···44466612···1212121212
size11111212222224···46···612122224···48888

39 irreducible representations

dim111111111222224444
type+++++++++++++--+
imageC1C2C2C2C2C2C2C2C2S3D6D6D6C4○D42- 1+4D42S3Q83S3Q8.15D6
kernelC42.177D6C4×Dic6C4×D12C4⋊C47S3C4.D12C4⋊C4⋊S3Q8×Dic3C12.23D4C3×C4⋊Q8C4⋊Q8C42C4⋊C4C2×Q8C12C6C4C4C2
# reps111224221114281222

Matrix representation of C42.177D6 in GL6(𝔽13)

100000
010000
001000
000100
000080
0000105
,
430000
390000
0012000
0001200
000080
0000105
,
720000
160000
00121200
001000
000011
0000012
,
6110000
1170000
00121200
000100
00001212
000021

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,10,0,0,0,0,0,5],[4,3,0,0,0,0,3,9,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,10,0,0,0,0,0,5],[7,1,0,0,0,0,2,6,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,1,12],[6,11,0,0,0,0,11,7,0,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,0,0,0,0,12,2,0,0,0,0,12,1] >;

C42.177D6 in GAP, Magma, Sage, TeX

C_4^2._{177}D_6
% in TeX

G:=Group("C4^2.177D6");
// GroupNames label

G:=SmallGroup(192,1291);
// by ID

G=gap.SmallGroup(192,1291);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,758,219,268,1571,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=a^2*b^2,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=b^2*c^5>;
// generators/relations

׿
×
𝔽